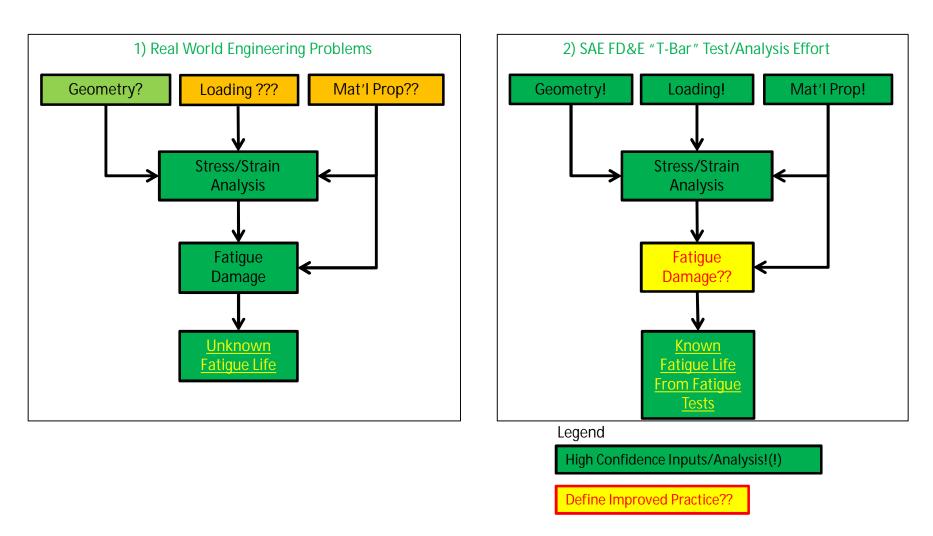
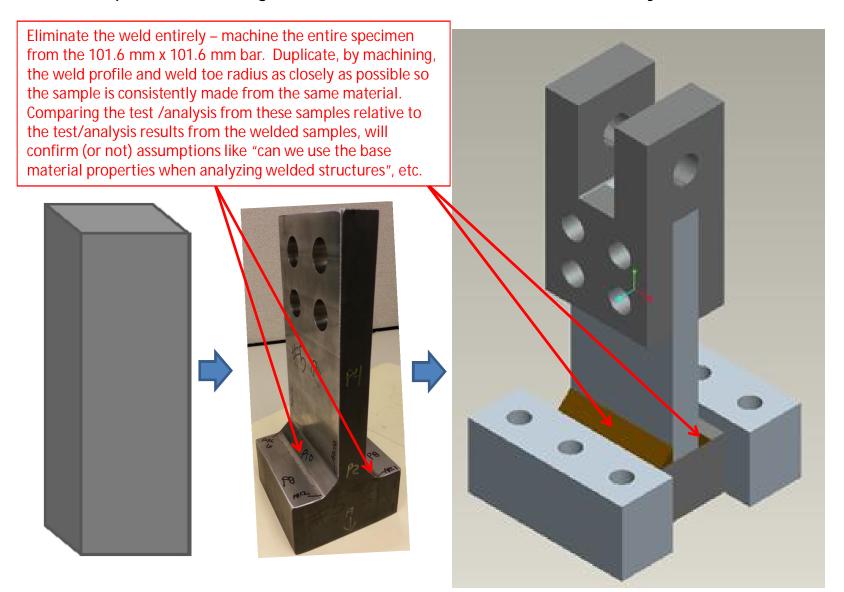
Summary of Fatigue Life Testing and Analysis of the A36 T-Joint Specimens Machined and Welded Completed Todate

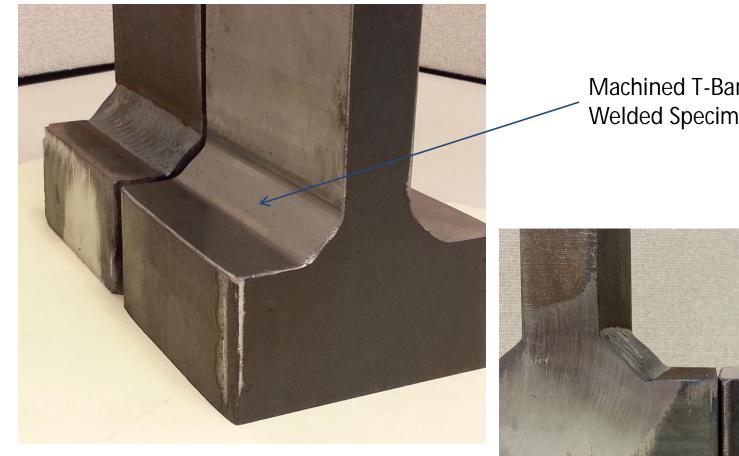

SAE FD&E Semi-Annual Meeting Contributors: See Next Slide 16 May 2018

Society of Automotive Engineering Fatigue Design and Evaluation Committee (SAE FD&E) A36 T-Joint Effort Participants/Contributors

- <u>SAE FD&E Committee Administrative/Leadership</u>: Chad Kerestes (Previous Chairman)-CAT, Casey Gales (Chairman)-JD, James Patterson (Vice Chairman)-Hendrickson
- <u>Machined & Welded T-Joint Component Fatigue Tests</u>: Ryan Blodig, Eric Norton, Mike Lister, and others-JD; Tom Cordes, Dan Lingenfelser-nCode
- <u>T-Joint Component Finite Element Analysis</u>: Hayley Brown-CAT, Peter Huffman-JD, Matt Campbell-Kansas State
- <u>Generate Strain-life & Crack Growth Data/Strain Measurements</u>: Phil Dindinger Element Materials Technology; Jonathan Pickworth Trilion Quality Systems
- <u>Residual Stress Distribution Measurements</u>: Perry Mason, Doug Hornbach and Paul Prevey Lambda Technologies; Adrian DeWald-Hill Engineering
- <u>Striation (Marker Band) Measurements</u>: N. Jayaraman, Doug Hornbach and Paul Prevey Lambda Technologies; Stephen Horstemeyer, Nima Shamsaei,-Mississippi State
- <u>Welded T-joint Component Fabrication & Test Direction/Support</u>: Eric Johnson-JD.
- <u>Providing the Steel for the Preceding Contributions</u>: Mary Wickham-CAT
- <u>Funding for Some of the Preceding Contributions</u>: Steve Haeg-MTS and Brian Dabell-nCode
- <u>T-Joint Component Fatigue Life Predictions and Correlation to Test Data</u>: Al Conle-University of Windsor; Semyon Mikheevskiy, Sergey Bogdanov and Grzegorz Glinka-University of Waterloo; Tom Cordes, Andrew Halfpenny-nCode
- <u>Residual Stress Subcommittee</u>: Casey Gales (Subcommittee Chairman), Eric Norton, Vipul Shinde, Rakesh Goyal-JD; David Griffith, Justin Mach, Chad Kerestes, Lingyun Pan, William Ulrich, Hayley Brown, Narendra Singh, Randy Peck, Timothy Vik-CAT; Matthew Campbell-Kansas State; Steve Haeg-MTS, John Goldack-Carleton University, Stephanie Swanson-Hendrickson
- <u>Welded T-joint Component (2nd Round of Welded Components) Fabrication and Test Direction/Support</u>: Eric Norton, Brandon Evans, and Casey Gales-JD.
- <u>And any other participants and contributors:</u> who may have been inadvertently overlooked in the preceding list.


"By participating in organized efforts the committee provides a	"Through the years, members have found that the more they
forum within which members can work together in a synergistic	participate in the Committee activities, the more they grow in the
manner to advance the state of the art in structural durability."	area(s) of their particular involvement."

From: Multiaxial Fatigue of an Induction Hardened Shaft (AE28) - Editors: Tom Cordes and Kevin Lease



This effort is using "very well defined/controlled analysis inputs" to address an engineering problem to validate (or not) a potential <u>"Total Fatigue Life Prediction Improved Practice"</u>

<u>Machined</u> <u>Specimen Configuration and Test Fixture/FEM Boundary Conditions</u>

Welded and Machined Specimens

Machined T-Bar Replicates Welded Specimen Geometry

T-Weld Test & Analysis Overview

- Test Log, 1st Round Welded and Machined Specimens
- Test Set Up
- Specimen Photos / Loading Histories
- RPC Iterations / Variable Amplitude Load History Files
- Fatigue Life Analysis
- 2nd Round Welded Specimens
- Residual Stress Measurements
- Questions / Comments

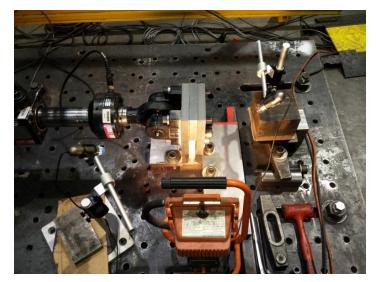
<u>Test Log – Machined Specimens,</u> <u>Constant, Block, & Variable Amplitude Loading</u>


Specimen	Designation	Load (kN)	R Ratio (P _{min} / P _{max})	Cycles	Notes		
19	MACH1	24	0.1	58481	Failure		
23	MACH5	24	0.1	70011	Failure		
22	MACH4-A	24	0.5	2471943	Run out		
22	MACH4-B	24	0.3	266012	Failure		
25	MACH7	24	0.3	218671	Failure		
35	MACH12	24	0.3	200464	Failure		
20	MACH2-A	14	0.1	3495011	Run out		
20	MACH2-B	18	0.1	411745	Failure		
24	MACH6	18	0.1	424431	Failure		
26	MACH8	10.8	-1	214765	Failure		
27	MACH9	10.8	-1	271951	Failure		
29	MACH10_VA1 24 24		0.1	326135	Repeat Block (5k cycles @ R=0.1, 40k cycles @ R=0.5)		
29			0.5	520155			
30	30 MACH11_VA2 24 24		0.1	301938	Popost Block (5k cyclos @ P=0,1, 40k cyclos @ P=0,5)		
50			0.5	201920	Repeat Block (5k cycles @ R=0.1, 40k cycles @ R=0.5)		
32	MACH_VA2_TBS	Variable	Variable	28 Full Blocks	Repeat Time History, Trans x 3, Brkt x 1, and Susp x 2		
33	MACH_VA3_TBS	Variable	Variable	29 Full Blocks	Repeat Time History, Trans x 3, Brkt x 1, and Susp x 2		

<u>Test Log – 1st Round Welded Specimens,</u> <u>Constant, Block, & Variable Amplitude Loading</u>

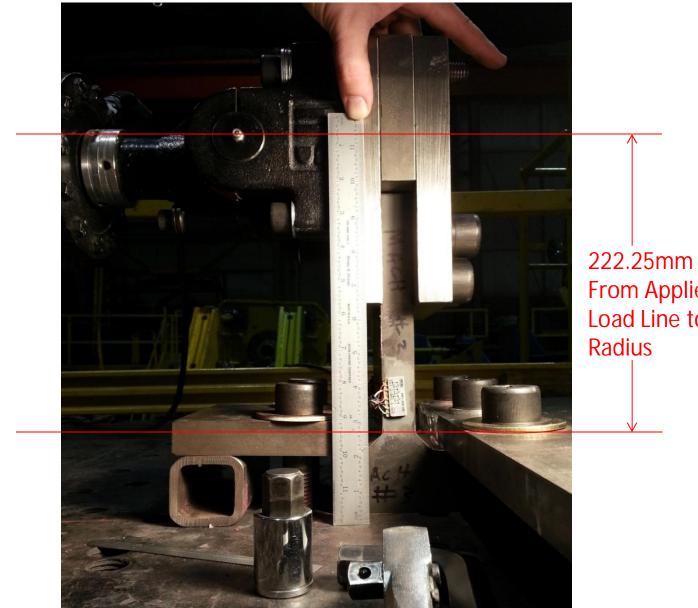
			R Ratio		
Specimen	Designation	Load (kN)	P min / P max	Cycles	Notes (All tests run to failure)
-	Setup Test	24	0.1	36,895	Hand Weld
1	2-2	24	0.1	48,160	
11	-	24	0.1	62,047	
2	4-2	24	0.3	105,522	
3	4-3	24	LT/=0.5	262,628	Early in the test the minimium load went to 0 one time
13	-	24	0.5	349,002	
9	-	24	0.5	503,441	
15	4-4	20	0.5	592,250	Test Life Correction
8	-	17	0.5	4,901,846	No Crack
10	-	14	0.1	325,579	
-	-	14	0.1	375,813	
6	3-3	14	0.1	494,456	
7	3-1	14	0.3	922,658	
4	4-1	24	.1/.5	138,421	Total Cycles from Repeated Block (5k cycles @ R=0.1, 40k cycles @ R=0.5)
28	RBW_VA2	24	.1/.5	174,069	Total Cycles from Repeated Block (5k cycles @ R=0.1, 40k cycles @ R=0.5)
31	RBW_VA1_TBS	24	Variable	21	Repeats of Time History, Trans x 3, Brkt x 1, and Susp x 2
34	RBW_VA4_TBS	24	Variable	21	Repeats of Time History, Trans x 3, Brkt x 1, and Susp x 2

SAE FD&E T-Weld Test Set Up


- MTS FlexTest IIm Controller
 - Load Control
 - Running tests at 5.1 Hz
- MTS 793 Series Software
 - Basic Testware (constant amplitude)
 - MultiPurpose Testware (block loading)
 - RPC Pro (variable amplitude loading TBS)
- MTS 244 Series Hydraulic Actuator
 - 11 Kip (50 kN) x 6" (152 mm) stroke
 - 252.25 Series dual stage servo valve
 - MTS Load cell and LVDT
- SOMAT eDAQ Lite
 - Record time history file
 - Collecting Load & Displacement
 - Collect strain on certain specimens
- Dino-Lite USB Cameras / Laptop
 - Capture time-lapse video at weld toe



SAE FD&E T-Weld Test Set Up



16 May 2018

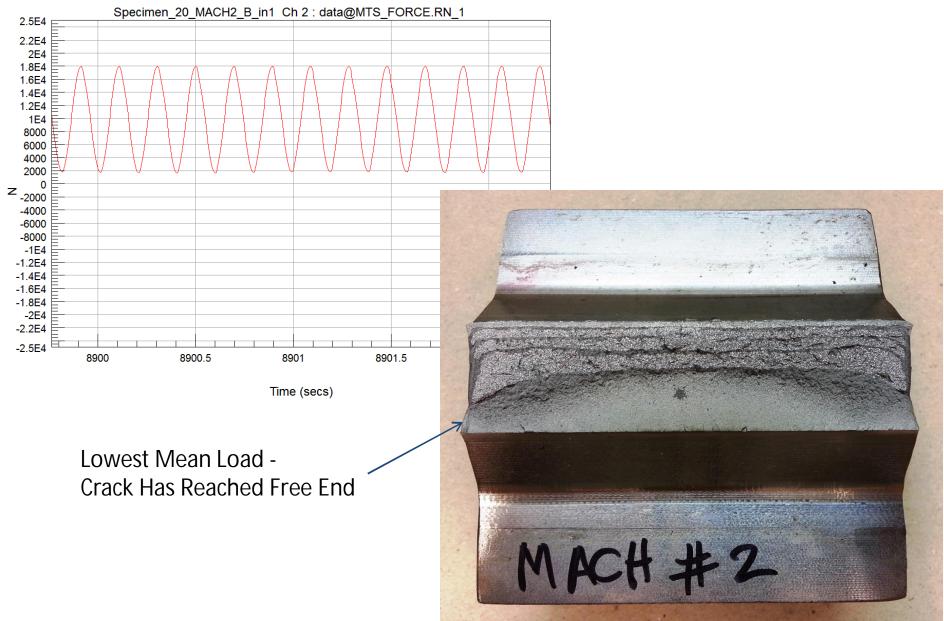
Total Fatigue Life: Crack Initiation and Crack Propagation...Test Results Specimen in Test Fixture/ for FEM Boundary Conditions

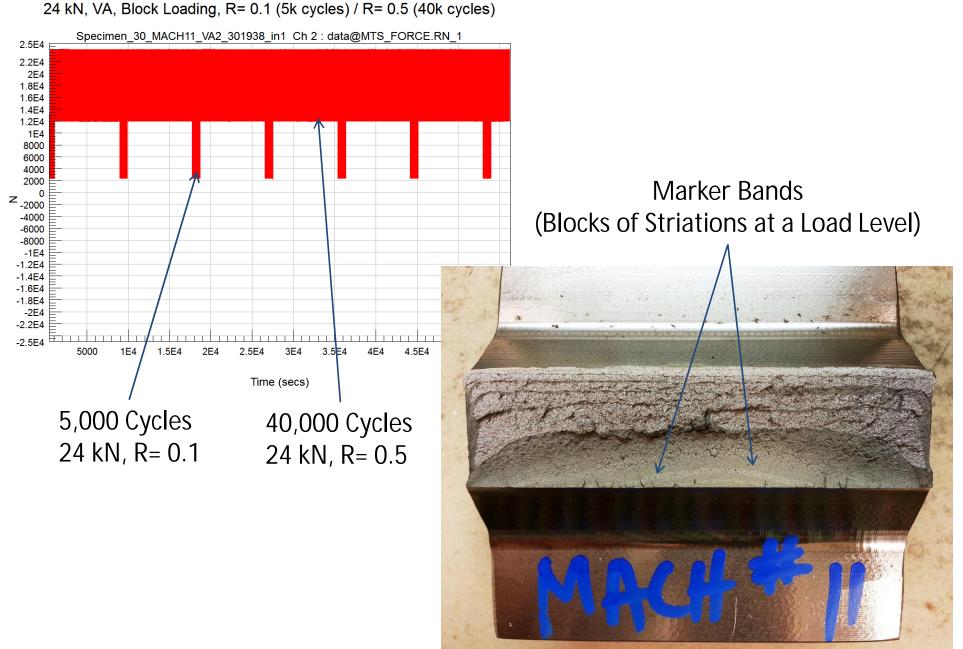
From Applied Load Line to

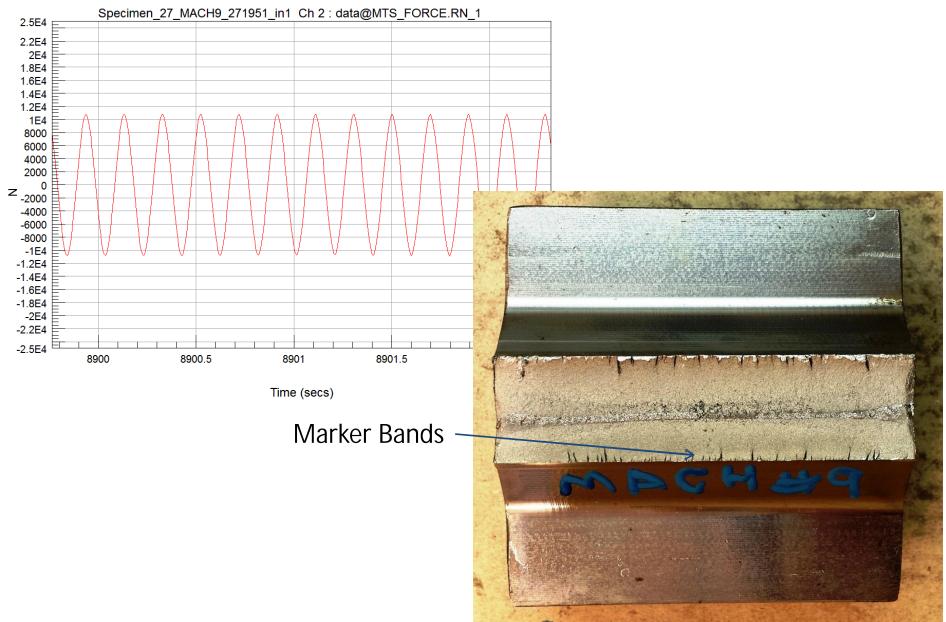

Machined T-Weld Specimens

- 24 kN, R= 0.3
- 24 kN, R= 0.1
- 18 kN, R= 0.1
- 10.8 kN, R= -1
- 24 kN, Variable Amplitude, Block Loading
- 24 kN (Max/Min), Variable Amplitude, Time History File (Tx3, Bx1, Sx2)

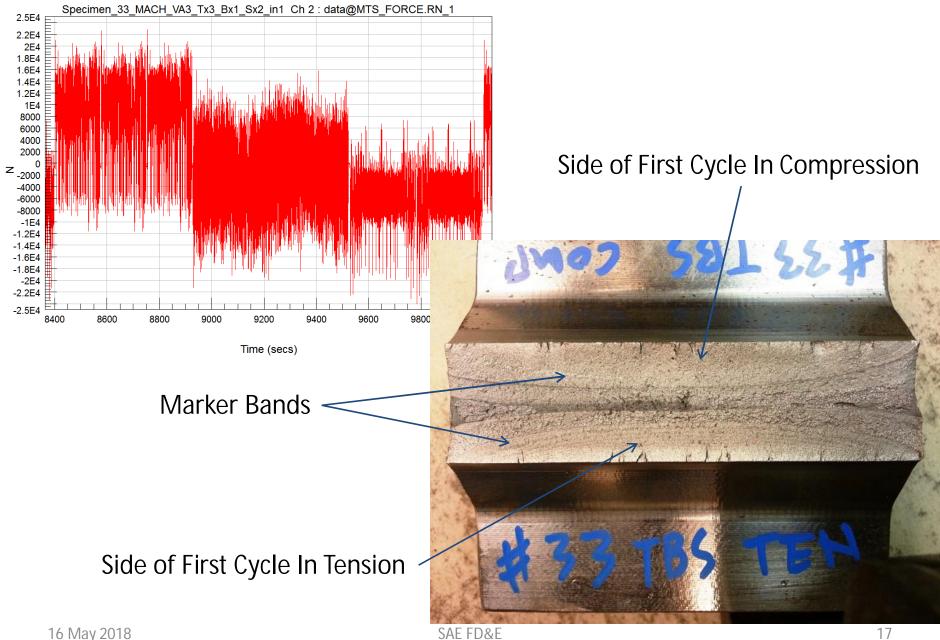
Specimen_25_MACH7_218671_in1 Ch 2 : data@MTS_FORCE.RN_1 2.5E4 2.2E4 2E4 1.8E4 1.6E4 1.4E4 1.2E4 1E4 8000 6000 4000 2000 0 z ₋₂₀₀₀ -4000 -6000 -8000 -1E4 -1.2E4 -1.4E4 -1.6E4 -1.8E4 -2E4 -2.2E4 -2.5E4 8900 8900.5 8901 8901.5 Time (secs) Highest Mean Load -Crack Has Not Reached Free End


24 kN, R= 0.3


24 kN, R= 0.1



18 kN, R= 0.1



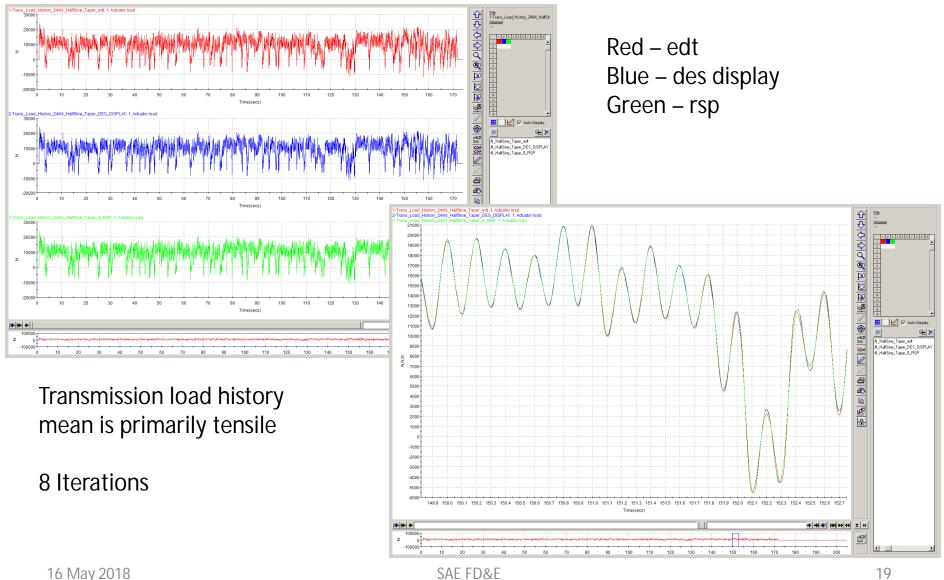
10.8 kN, R= -1

24 kN Max / 24 kN Min, VA, Time History Profile (Trans x3, Brkt x1, Susp x2)

RPC Iterations

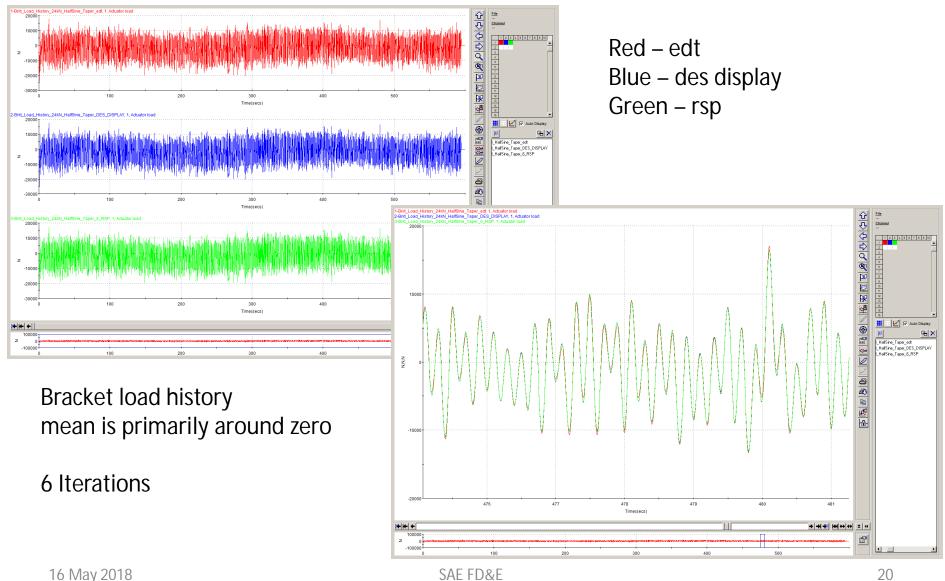
The variable amplitude load histories were created through an iteration process using an MTS Software package called RPC Pro.

When iterating a test, the goal is to match the signal response to the signal command

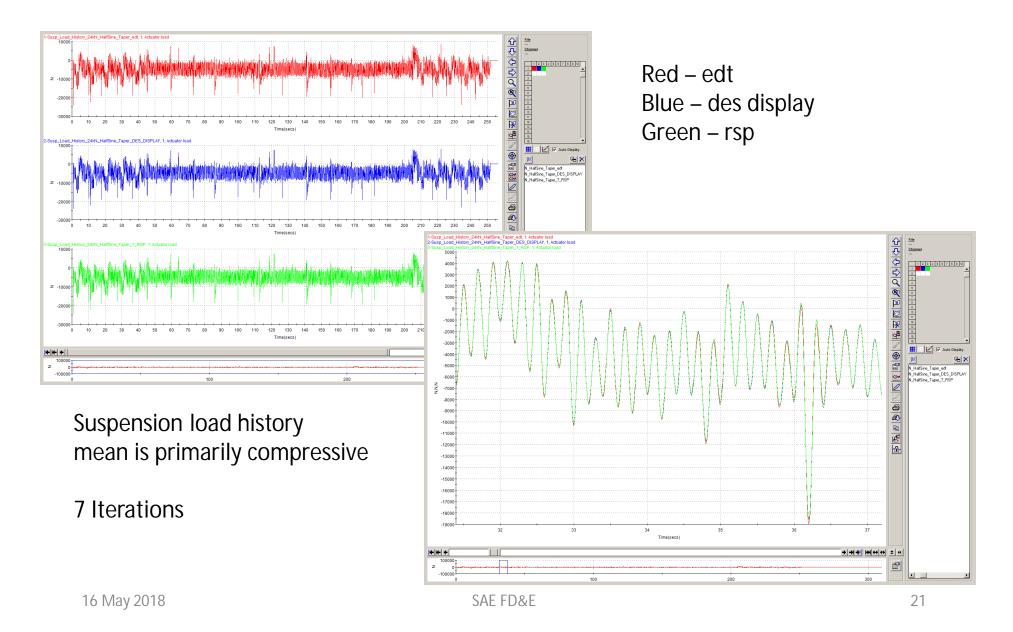

For this testing SAE used the transmission, bracket, and suspension load histories that were used in previous SAE fatigue experiments (SAE AE-6, 1977)

Load histories were developed for the total life project individually then concatenated together for a complete variable amplitude time history

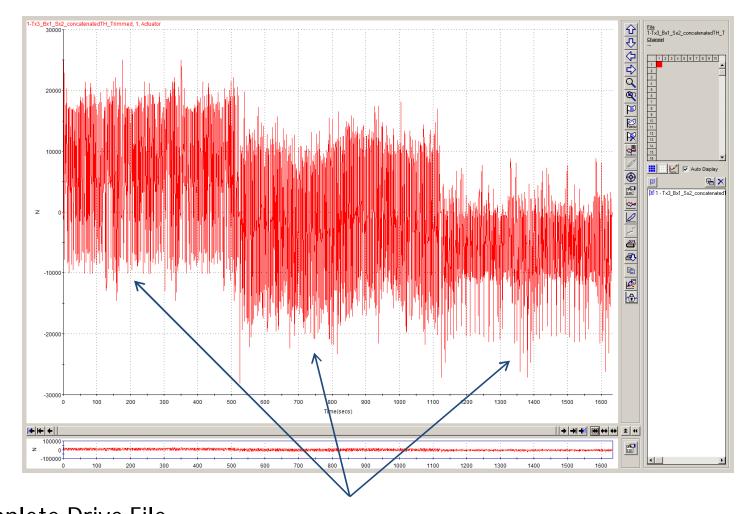
Simplified Process – Create edt (real or edited time history) Generate desired display (filtered edt) Iterate the time history until the feedback signal (response) matches the command signal (desired display)


We are able to very accurately duplicate the command signal due to the iterative capability of RPC Pro

RPC Iterations – Transmission Time History


16 May 2018

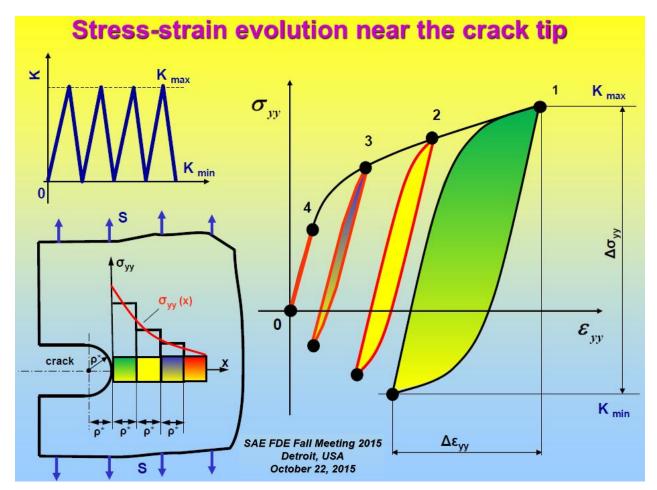
<u>**RPC Iterations – Bracket Time History</u>**</u>



16 May 2018

<u>**RPC Iterations – Suspension Time History</u>**</u>

<u>RPC Iterations – Final Drive</u>

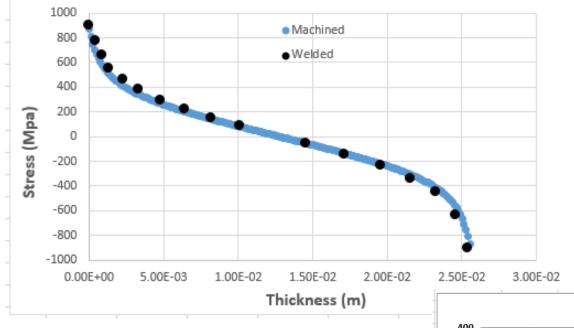

Complete Drive File – 3 Repeats of Transmission, 1 Repeat of Bracket, 2 Repeats of Suspension

16 May 2018

Method: Whole Life Machined and Welded Fatigue Life Predictions

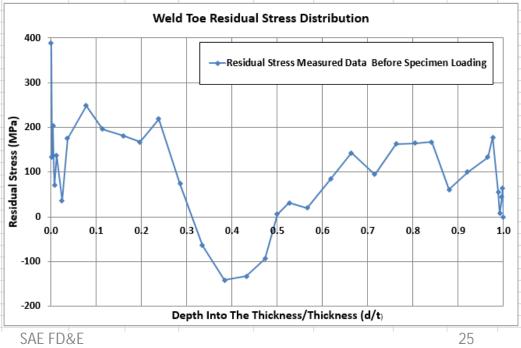
Reference:

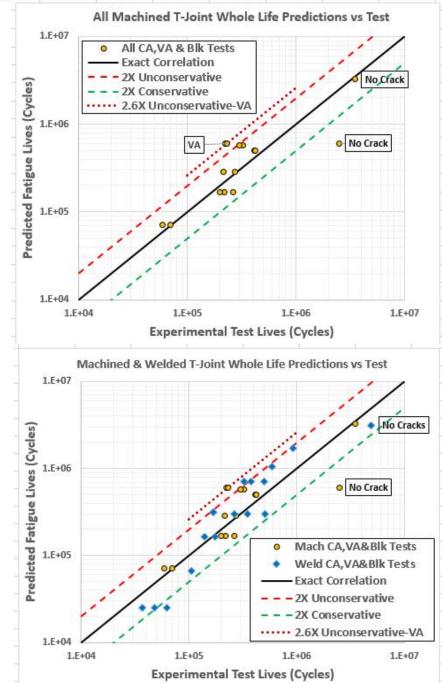
[1] Mikheevskiy, S., 2009, "Elastic-Plastic Fatigue Crack Growth Analysis Under Variable Amplitude Loading Spectra," PhD thesis, University of Waterloo.

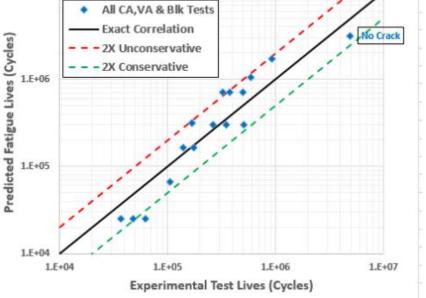


29 A36 T-Joint Test Results to Date

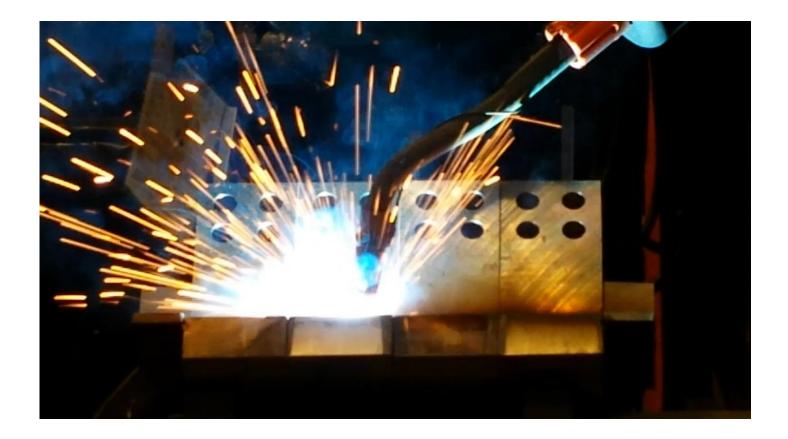
Machined Specime	ns (15)		
·			Experimental
Max Ld	Max Stress	R Ratio	Test Life
kN	Mpa	Dimensionless	Cycles
24***	870.44	0.5	2,471,943
24****	870.44	0.3	266,012
24	870.44	0.3	218,671
24	870.44	0.3	200,464
24	870.44	0.1	58,481
24	870.44	0.1	70,011
18*****	652.83	0.1	411,745
18	652.83	0.1	424,431
14***	507.76	0.1	3,495,011
10.8	391.70	-1.0	214,765
10.8	391.70	-1.0	271,951
24	870.44	*Block Ld: 0.1/.5	326,135
24	870.44	*Block Ld: 0.1/.5	301,938
24	870.44	**Var Amplitude	224,672
24	870.44	**Var Amplitude	232,696
Notes: *5,000 24Kn	R=0.1 Cycles fo	ollowed by 40,000 24	4Kn R=0.5 Cycles
**3xSAE Tran	smission+1xB	racket+2xSuspensio	n PV File
***Run out			
****Tested after	R=0.5 run out		
*****Tested after	R=0.1 run out		


			Experimental
Max Ld	Max Stress	R Ratio	Test Life
kN	Mpa	Dimensionless	Cycles
24	902.62	0.1	36,895
24	902.62	0.1	48,160
24	902.62	0.1	62,047
14	526.53	0.1	325,579
14	526.53	0.1	375,813
14	526.53	0.1	494,456
24	902.62	0.3	105,522
14	526.53	0.3	922,658
24	902.62	0.5	262,628
24	902.62	0.5	349,002
24	902.62	0.5	503,441
20	752.18	0.5	592,250
17***	639.36	0.5	4,901,846
24	902.62	*Block Ld: 0.1/.5	138,421
24	902.62	*Block Ld: 0.1/.5	174,069
24	902.62	**Var Amplitude	168,504
24	902.62	**Var Amplitude	168,504


Total Fatigue Life: Crack Initiation and Crack Propagation Analysis ... Whole Life Comparison - Welded to Machined FEM Stress Distributions


The welded analysis was exactly the same as the machined analysis except the FEM stress distribution input was changed (slightly) from the machined distribution to the welded distribution as shown in the figure on the left.....

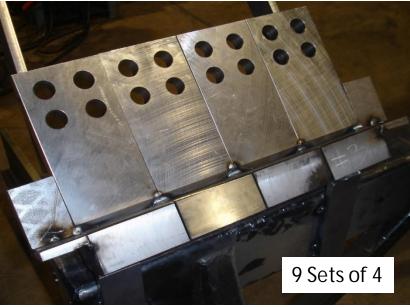
And the welding residual stress distribution (shown in the figure on the right) was included in the analysis. No residual stress distribution was input in the machined analysis.

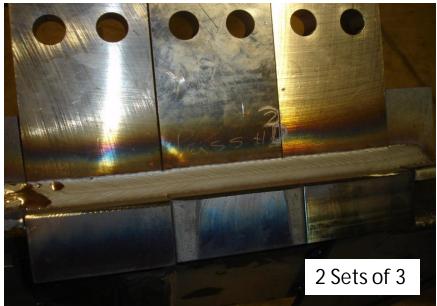

Total Fatigue Life: Crack Initiation and Crack Propagation Analysis ... Whole Life All Machined T-Joint Whole Life Predictions vs Test All Welded T-Joint Whole Life Predictions vs Test All Welded T-Joint Whole Life Predictions vs Test All CA,VA & Blk Tests All CA,VA & Blk Tests Carcelation Carcela

Whole Life Fatigue Life Predictions to *"Failure"* 1)The fatigue life predictions of the welded

samples appear to be consistent with the fatigue life predictions of the machined samples.

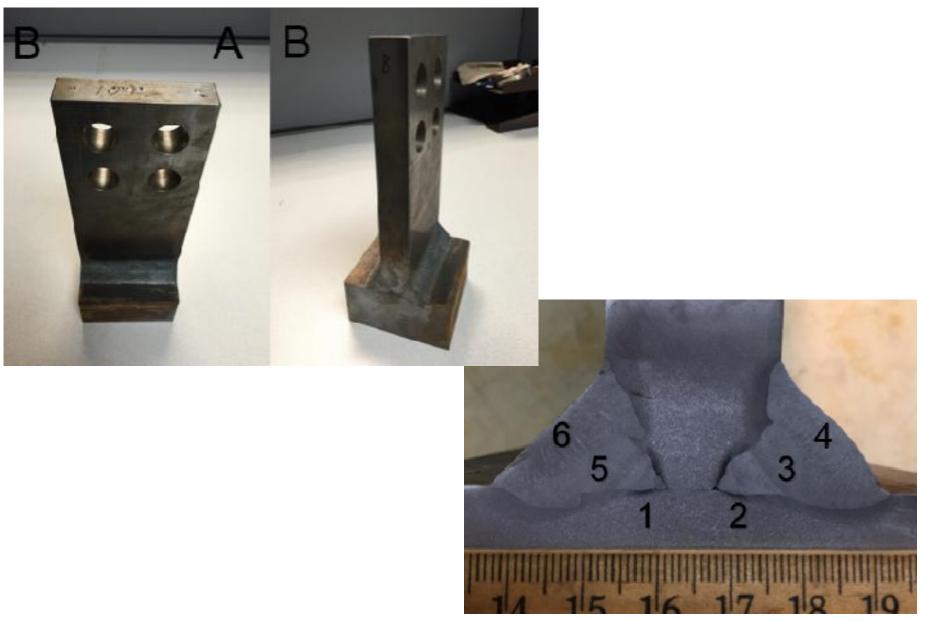
2)All the predicted fatigue lives fall within scatter bands of approximately +/- 2 times the test lives to failure – except the machined variable amplitude predicted fatigue lives. Those two test predictions were approximately +2.6 times the test lives to failure.

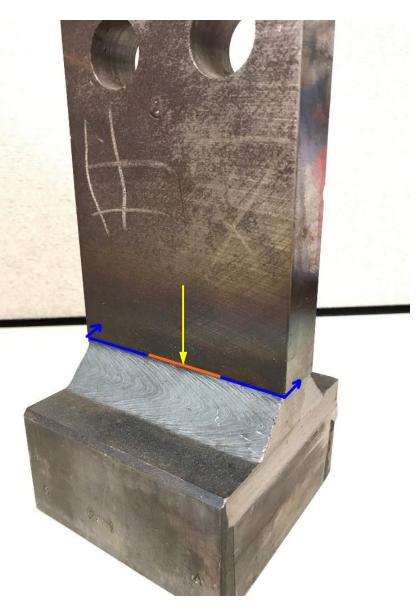



2nd Round Welded Specimens

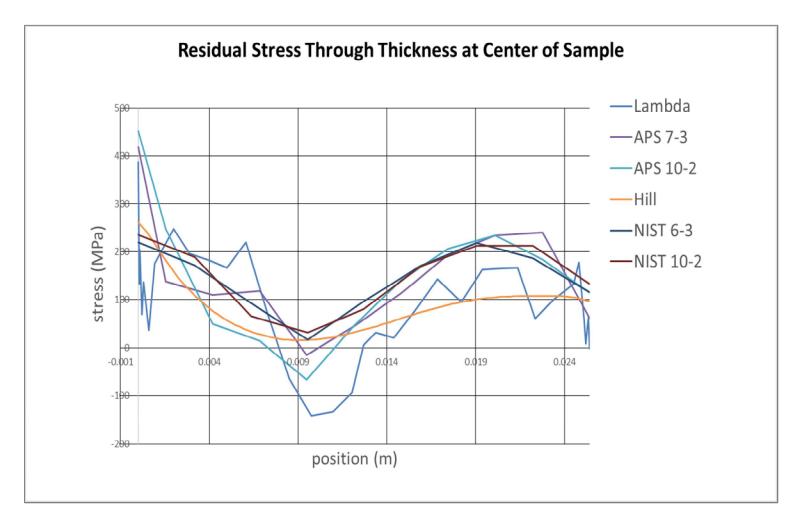
Total Fatigue Life: Crack Initiation and Crack Propagation Analysis ... Whole Life Welding Process

Weld	Side	Starting	Voltage	Current	Wire Speed	Travel	Work	Cooling	
		End				Speed	Angle	Time*	
1	1	А	38.5 V	235 A	7 m/min	40 cm/min	45	NA	
2	2	В	38.5 V	235 A	5 A 7 m/min 40 cm/min 45		45 s		
3	2	В	39.0 V	300 A	8 m/min	35 cm/min	45	3 s	
4	2	В	39.5 V	225 A	8.5 m/min	60 cm/min	45	3 s	
5	1	А	39.0 V	300 A	8 m/min	35 cm/min	45	1 m 30 s	
6	1	А	39.5 V	225 A	8.5 m/min	60 cm/min	45	2 m 30 s	
	Para	meter/Chara		Value					
		Welding Proc	ess		(GMAW)				
		Wire Type			(Solid)				
		Wire Diamet	er		0.062 inches				
		Shielding Ga	15		90% CO2/ 10% Ar				
		Base Materia	al		A36				
		Filler Metal	l		ER70S-6				
		Welding Posit		45 deg for all weld passes					


* Tabular data was provided by SAE FD&E project members.

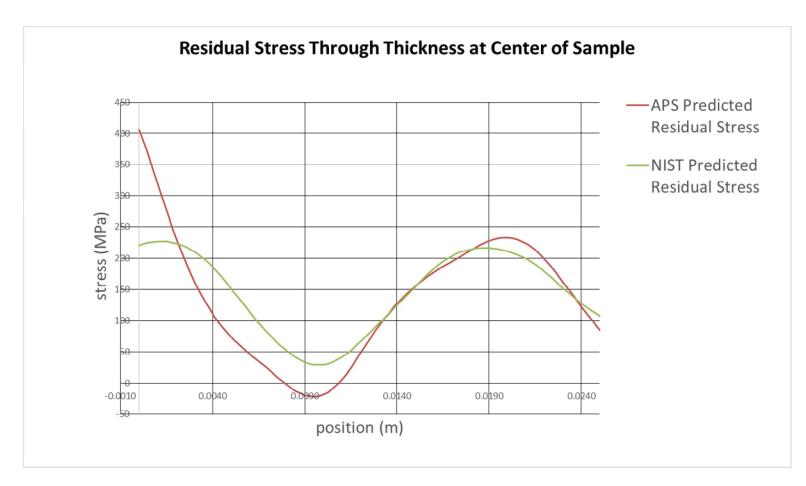

16 May 2018

Total Fatigue Life: Crack Initiation and Crack Propagation Analysis ... Whole Life Welding Sequence



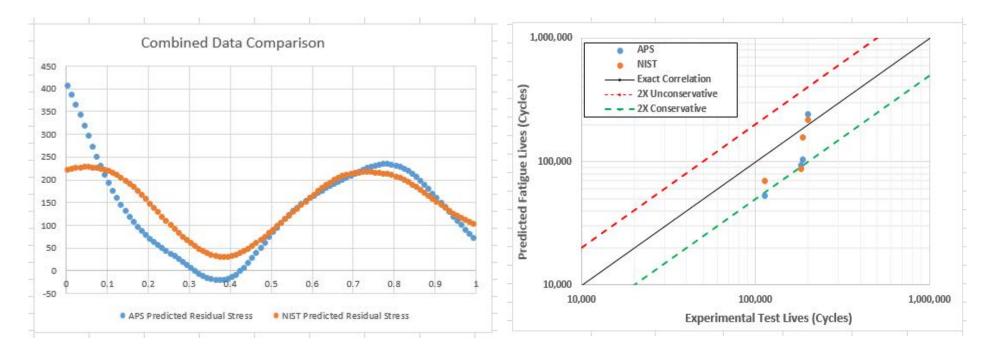
Total Fatigue Life: Crack Initiation and Crack Propagation Analysis ... Whole Life Residual Stress Measurements

- Residual stress measurements taken at the center, through the part
- Position 0 is the front surface of vertical plate
- Position 0.0254 is the back surface of vertical plate



Total Fatigue Life: Crack Initiation and Crack Propagation Analysis ... Whole Life Residual Stress Measurements

- Large variation in magnitudes of stress at position 0
- 452MPa to 219MPa
- Lambda RSD From Round 1


Total Fatigue Life: Crack Initiation and Crack Propagation Analysis ... Whole Life Residual Stress Measurements

- Data provided by Mark Andrews SmartUQ
- Generated through uncertainty analysis of the APS and NIST sample data

Total Fatigue Life: Crack Initiation and Crack Propagation Analysis... Whole Life Evaluate Residual Stress Distributions Obtained by Two Different Methods

Specimen	Designation	Load (kN)	R Ratio (σ _{min} / σ _{max})	Cycles	Notes	Stress Mpa	APS		NIST	
36	RBW2_2.2	18	0.1	185,863	Side 2 in tension, Higher tensile residual stress	676.965	104,616	-0.44	156,086	-0.16
37	RBW2_2.3	18	0.1	201,168	Side 1 in tension, Lower tensile residual stress	676.965	240,705	0.20	217,027	0.08
38	RBW2_3.2	24	0.3	112,464	Side 2 in tension, Higher tensile residual stress	902.62	52,692	-0.53	70,014	-0.38
39	RBW2_3.3	24	0.3	183,223	Side 1 in tension, Lower tensile residual stress	902.62	92,983	-0.49	87,739	-0.52

NIST residual stress distribution may give slightly better correlation to test data

Questions?