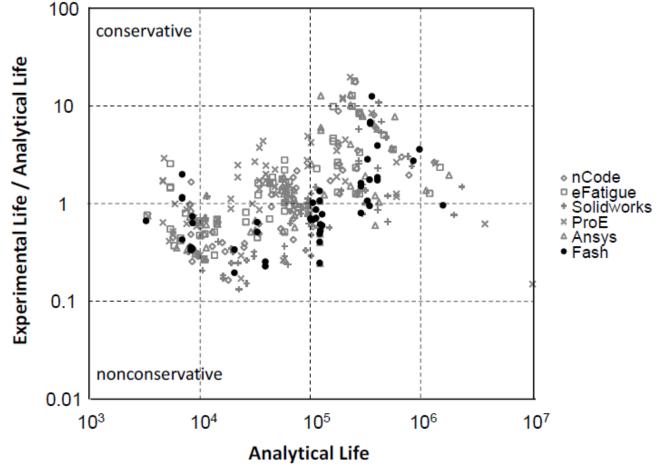
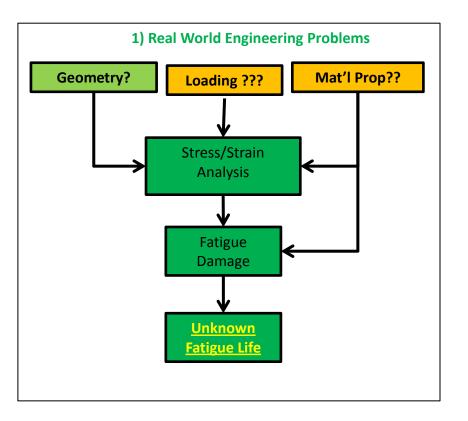
Predicting Total Fatigue Life (Crack Initiation and Crack Propagation)

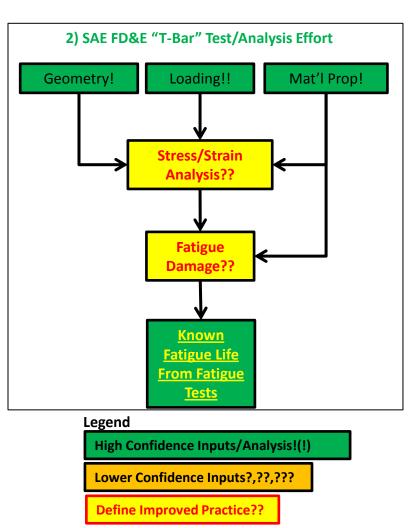
Presented to the SAE FD&E Committee at Cincinnati, OH on 15 April 2013 (Prepared by Tom Cordes)

- →1. Overview of Effort
 - 2. Machined Samples Analysis/Test Results Comparison Summary
 - 3. 24Kn R=0.1(5,000 cycles)/0.5(40,000 cycles) Block Loading Machined Sample Detailed Analysis/Test Comparison
 - 4. 24Kn Variable Amplitude Machined Sample Block Loading Analysis/Test Comparison Issues?
 - 5. Crack Initiation and Crack Propagation Analysis Methodology Background (If time allows)

"ENGINEERING IS THE ART OF MODELING MATERIALS WE DO NOT WHOLLY UNDERSTAND, INTO SHAPES WE CANNOT PRECISELY ANALYZE, SO AS TO WITHSTAND FORCES WE CANNOT PROPERLY ASSESS, IN SUCH A WAY THAT THE PUBLIC HAS NO REASON TO SUSPECT THE EXTENT OF OUR IGNORANCE."


DR. A.R. DYKES, CHAIRMAN, BRITISH INSTITUTE OF STRUCTURAL ENGINEERS

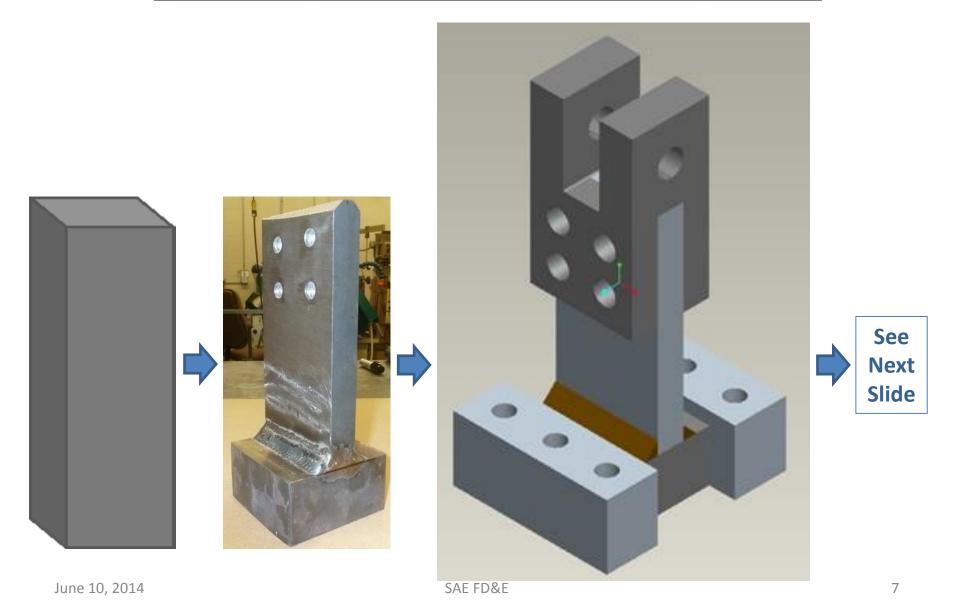

"ENGINEERING IS THE ART OF MODELING MATERIALS WE DO NOT WHOLLY UNDERSTAND, INTO SHAPES WE CANNOT PRECISELY ANALYZE, SO AS TO WITHSTAND FORCES WE CANNOT PROPERLY ASSESS, IN SUCH A WAY THAT *THE ENGINEER* HAS NO REASON TO SUSPECT THE EXTENT OF *HIS OR HER* IGNORANCE."


DR. A.R. DYKES, CHAIRMAN, BRITISH INSTITUTE OF STRUCTURAL ENGINEERS As modified by T. Cordes (15 April 2014)

Previous SAE FD&E Analysis to Test Correlation Effort Results``

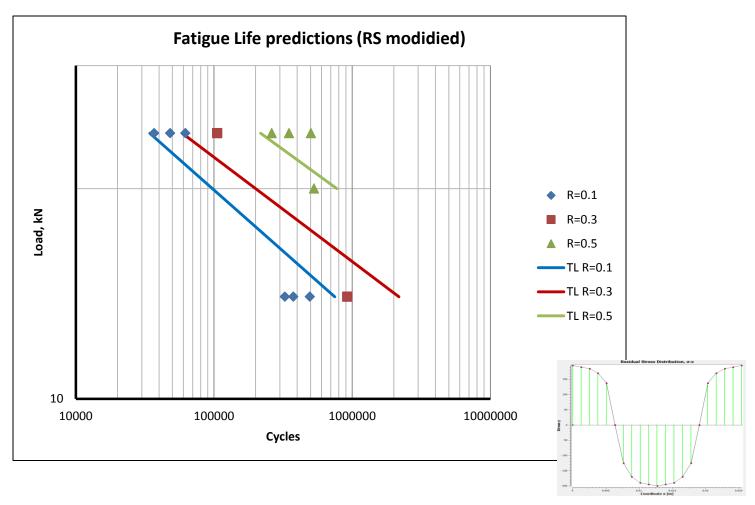
A brief summary of the fatigue theories and strategies employed by the various software packages used to compute fatigue lives is given below. A common feature of all of the analysis is that they used what may be termed the strain-life method. Commonality ends there. They all used different notch rules and fatigue damage models.

This effort is using "very well defined/controlled analysis inputs" to address an engineering problem to validate (or not) a potential "Total Fatigue Life Prediction Improved Practice"


<u>Maintain Exact – Same Steel Pedigree</u> (<u>Material Characterization</u>) <u>Definition/Documentation</u>

Purchased "Enough" 4 Microstructure, A36 20ft HR bars Chemistry & Hardness Sample Radius UNIT: mm -7.62 22.86 -15.00 92,33 19.05 114.30 228.60 0.25W +0.05 (0.002) Dia 0.6W ±0.005W See Fig. 1 for 0.275W ±0.005W 0.275W 0.6W W ± 0.005W 1.25W ± 0.010W

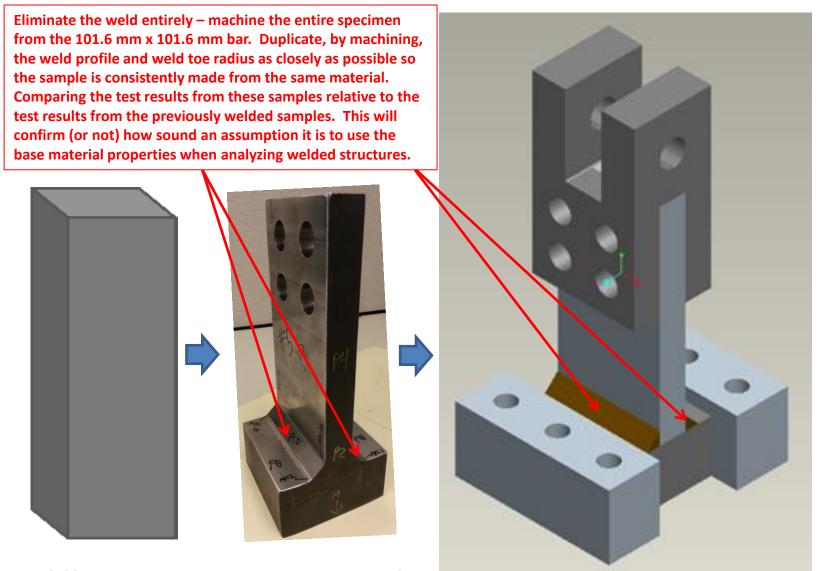
SAE FD&E


W = 25 mm (1.0 in) a_n = 0.20W

<u>Load Carrying Weld</u> <u>Specimen Configuration and Test Fixture/FEM Boundary Conditions</u>

Total Fatigue Life – Crack Propagation Analysis Includes Crack Initiation Analysis

FCG analysis using Total Life and RS modified

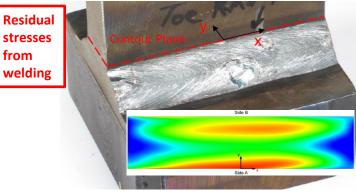


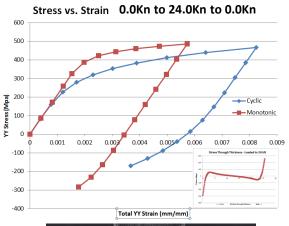
- Total life approach was run with initial semi-circular crack with $a=b=\rho^*$ until failure
- R=0.1, R=0.3, and R=0.5 were used
- L=24kN, L=20kN, and L=14kN were used
- Very similar results as for RS measured, slightly longer life in all cases

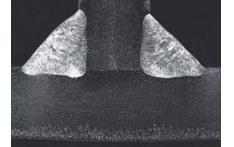
June 10, 2014 SAE FD&E

Machined

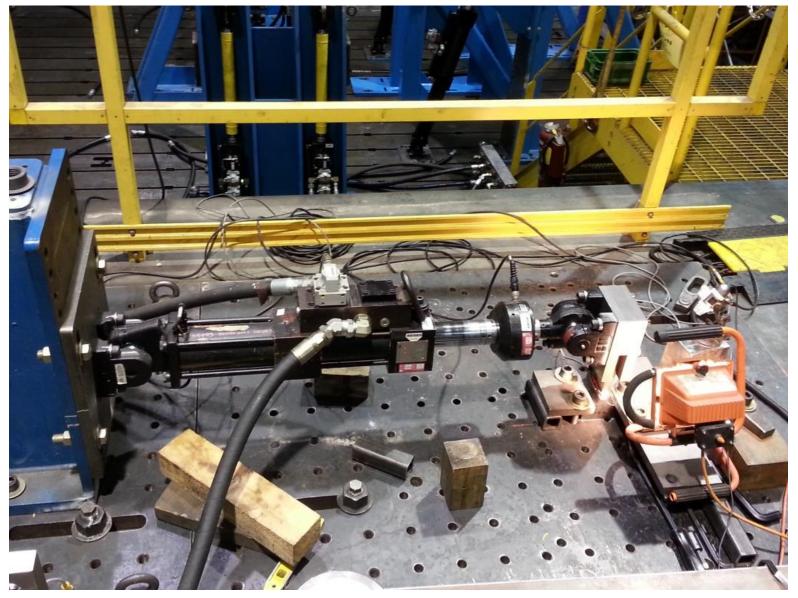
Specimen Configuration and Test Fixture/FEM Boundary Conditions

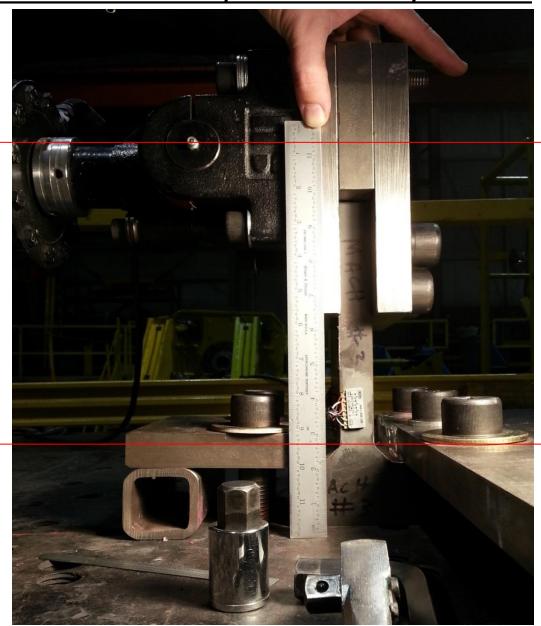



Demonstrate Accurate Fatigue Life Predictions of the Less Complex Machined Sample Relative to High Confidence Component Test Data


Add the Complexities Introduced by Welding to that Machined **Sample Fatigue Life Prediction Approach**

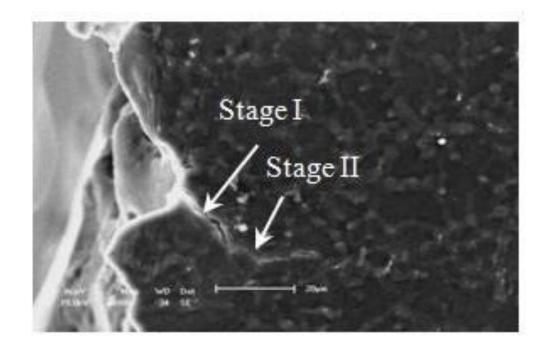
Produce Accurate Fatigue Life Predictions of the More Complex Welded Sample Relative to High **Confidence Component Test Data?**





Welded microstructure influences

Specimen in Test Fixture

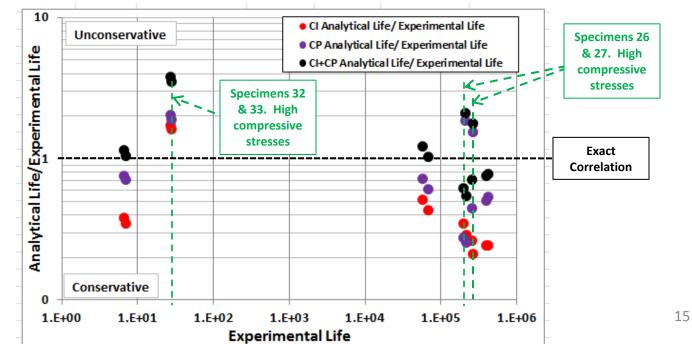

Total Fatigue Life: Crack Initiation and Crack Propagation Analysis Specimen in Test Fixture/ for FEM Boundary Conditions

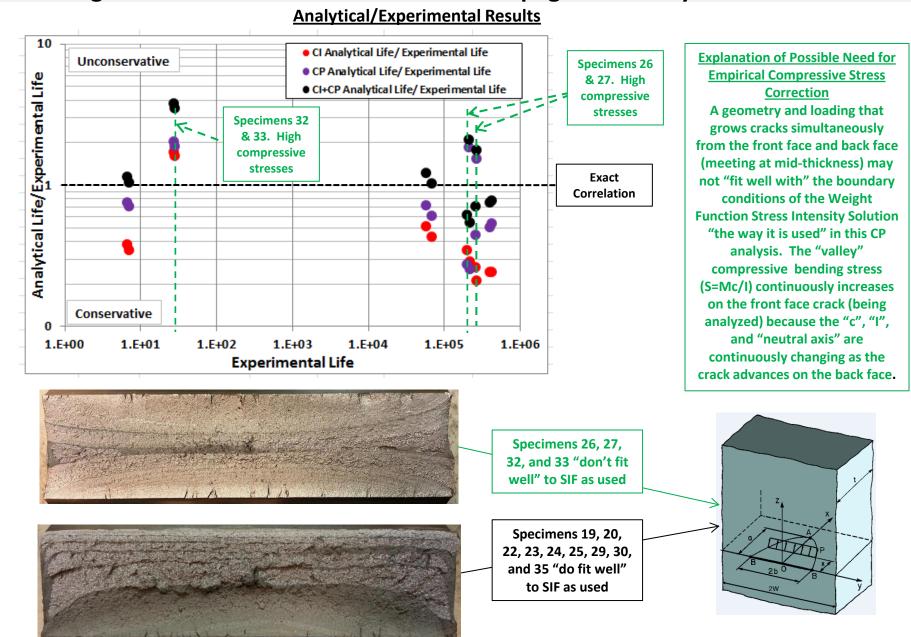
222.25mm From Applied Load Line to Radius

- 1. Overview of Effort
- -> 2. Machined Samples Analysis/Test Results Comparison Summary
 - 3. 24Kn R=0.1(5,000 cycles)/0.5(40,000 cycles) Block Loading Machined Sample Detailed Analysis/Test Comparison
 - 4. 24Kn Variable Amplitude Machined Sample Block Loading Analysis/Test Comparison Issues?
 - 5. Crack Initiation and Crack Propagation Analysis Methodology Background (If time allows)

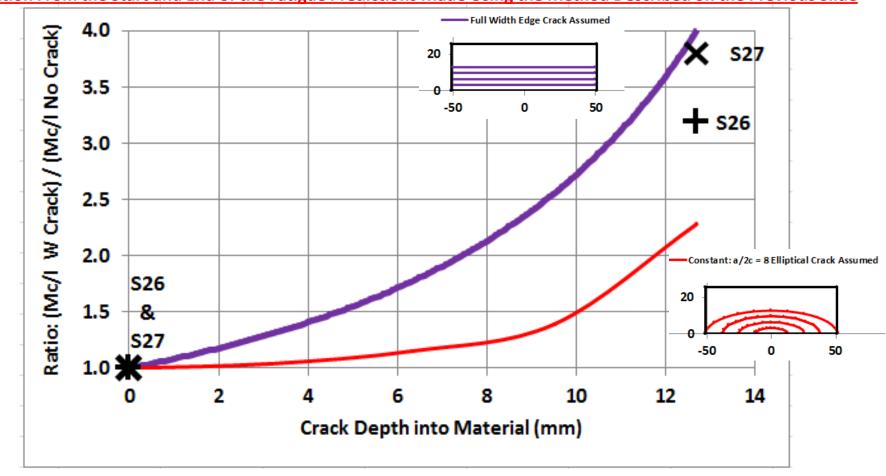
Define CI and CP

Analytical/Experimental Results

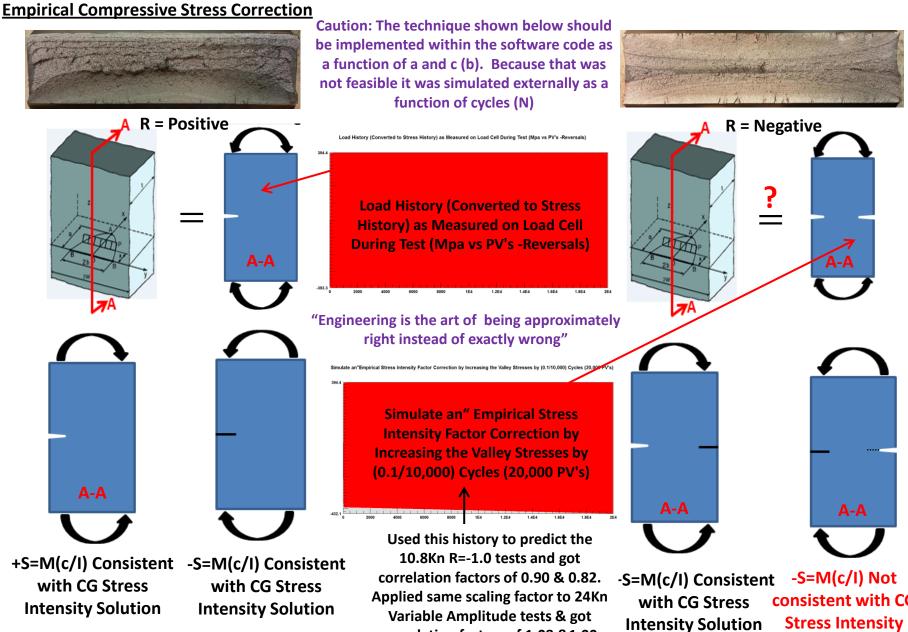

	Test Load	Testing	Max Stress	Max Strain	Setup Cycle	Test Life (TL)	Test Life	Predicted	Predicted	Predicted	Fatigue Exp. #2	CI+CP Life/
Specimen	Load	R Ratio	Level	Level	R Ratio	Cycle Counter	PV File	CI Life	CP Life	CI+CP Life	Predicted CI Life	Test Life (TL)
Number	Kn	Dimensionless	Mpa	ue	Dimensionless	Cycles or Blocks	Cycles or Blocks	Cycles or Blocks	Cycles or Blocks	Cycles or Blocks	Cycles or Blocks	Dimensionless
22	24	0.3	870.44	4150	0.0	266,012	266,001	68,750	117,374	186,124	58,033	0.70
25	24	0.3	870.44	4150	0.3	218,671	218,658	62,430	54,606	117,036	57,765	0.54
35	24	0.3	870.44	4150	0.3	200,464	200,446	68,180	54,753	122,786	57,876	0.61
19	24	0.1	870.44	4150	0.1	58,481	58,470	29,360	41,354	70,714	25,743	1.21
23	24	0.1	870.44	4150	0.1	70,011	70,000	29,710	41,920	71,630	25,944	1.02
20	18	0.1	652.83	3113	0.1	411,745	411,735	98,750	205,590	304,340	83,575	0.74
24	18	0.1	652.83	3113	0.0	424,431	424,205	101,900	225,421	327,321	85,701	0.77
26	10.8	-1.0	391.70	1868	None	214,765	214,656	57,030	391,856	448,886	52,666	2.09
27	10.8	-1.0	391.70	1868	None	271,951	271,836	56,870	415,417	472,287	52,613	1.74
29	24	*Block: 0.1/.5	870.44	4150	0.1	7.2	7.3	2.5	5.0	7.5	2.2	1.04
30	24	*Block: 0.1/.5	870.44	4150	0.1	6.7	6.7	2.5	5.0	7.6	2.3	1.13
32	24	Variable Amplitude	870.44	4150	None	28.0	28.4	47.5	56.4	104.0	43.0	3.71
33	24	Variable Amplitude	870.44	4150	None	29.0	29.0	46.1	53.7	99.9	35.6	3.44


Note: *5,000 24Kn R=0.1 Cycles followed by 40,000 24Kn R=0.5 Cycles

Observations:


- 1) For the CI + CP fatigue life predictions, only peak valley histories with a lot of high compressive stress cycles vary significantly from a "correlation factor" of "1".
- 2) Both the CI and CP fatigue life predictions significantly "over predict" the fatigue life for the variable amplitude PV history.

June 10, 2014

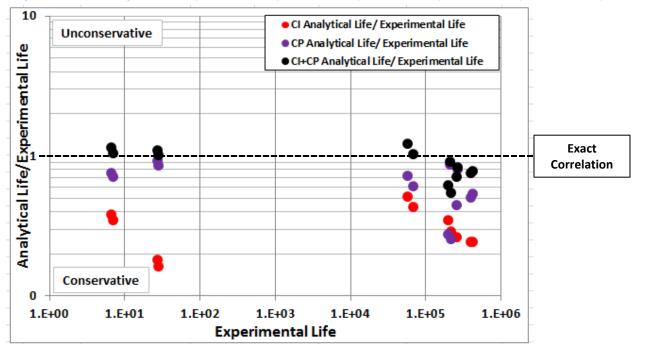


<u>For a Crack of increasing Size: Calculated (Mc/I With Crack) / (Mc/I No Crack) Compared to Empirical Compressive Stress</u>
Correction From the Start and End of the Fatigue Predictions Made Using the Method Described on the Previous Slide

Further Description of Analysis Method: Only the compressive stress cycles in the peak-valley history where increased by this "linear empirical compressive stress correction trend". It calculated 1.00 times the stress at the start of the cycling and increased the stress at each subsequent compressive valley cycle by .1/10,000 (tension and/or compression) cycles until failure. At the beginning of the test both factors were equal to 1.0 (points on the left side of the plot). At failure the factors were calculated by dividing the maximum compressive stress at failure by the initial maximum compressive stress (points on the side side of the plot). Specimen 26 Ratio =3.16, Specimen 27 Ratio =3.80.

June 10, 2014

SHE FUKE

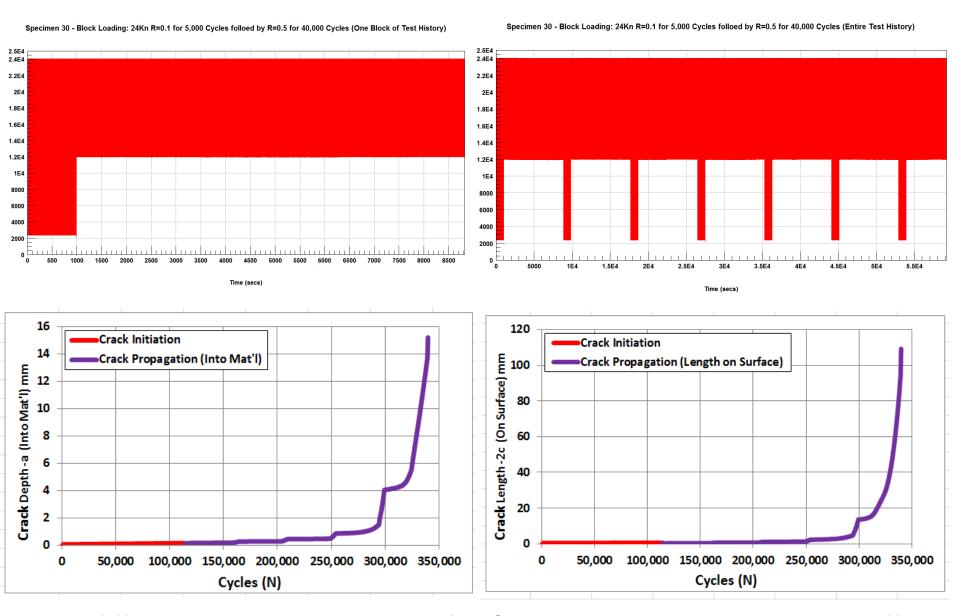

correlation factors of 1.08 & 1.00

consistent with CG
Stress Intensity
Solution (c/I is
constantly increasing)

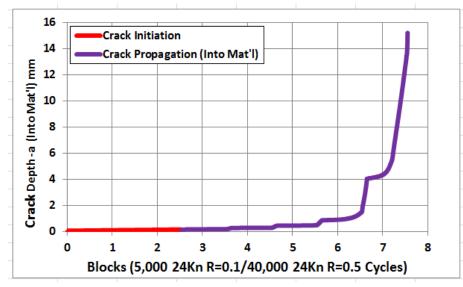
Analytical/Experimental Results (With Empirical Compressive Stress Correction)

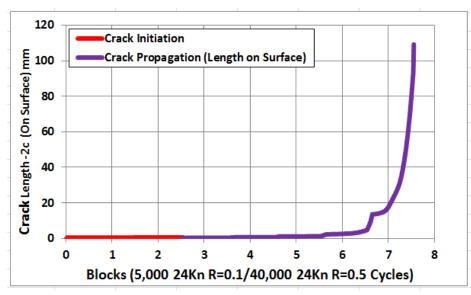
	Test	Test	Max Stress	Max Strain	Setup Cycle	Test Life (TL)	Test Life	Predicted	Predicted	Predicted	Fatigue Exp. #2	CI+CP Life/
Specimen	Load	R Ratio	Level	Level	R Ratio	Cycle Counter	PV File	CI Life	CP Life	CI+CP Life	Predicted CI Life	Test Life (TL)
Number	Kn	Dimensionless	Mpa	ue	Dimensionless	Cycles or Blocks	Dimensionless					
22	24	0.3	870.44	4150	0.0	266,012	266,001	68,750	117,374	186,124	58,033	0.70
25	24	0.3	870.44	4150	0.3	218,671	218,658	62,430	54,606	117,036	57,765	0.54
35	24	0.3	870.44	4150	0.3	200,464	200,446	68,180	54,753	122,786	57,876	0.61
19	24	0.1	870.44	4150	0.1	58,481	58,470	29,360	41,354	70,714	25,743	1.21
23	24	0.1	870.44	4150	0.1	70,011	70,000	29,710	41,920	71,630	25,944	1.02
20	18	0.1	652.83	3113	0.1	411,745	411,735	98,750	205,590	304,340	83,575	0.74
24	18	0.1	652.83	3113	0.0	424,431	424,205	101,900	225,421	327,321	85,701	0.77
26	10.8	-1.0	391.70	1868	None	214,765	214,656	9,382	184,446	193,828	8,765	0.90
27	10.8	-1.0	391.70	1868	None	271,951	271,836	6,489	215,559	222,048	6,107	0.82
29	24	*Block: 0.1/.5	870.44	4150	0.1	7.2	7.3	2.5	5.0	7.5	2.2	1.04
30	24	*Block: 0.1/.5	870.44	4150	0.1	6.7	6.7	2.5	5.0	7.6	2.3	1.13
		,									-	
32	24	Variable Amplitude	870.44	4150	None	28.0	28.4	5.0	25.3	30.3	3.0	1.08
33	24	Variable Amplitude	870.44	4150	None	29.0	29.0	4.7	24.3	29.0	2.8	1.00

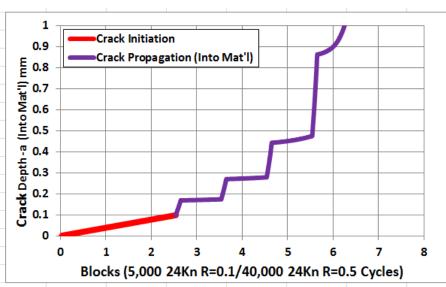
Note: *5,000 24Kn R=0.1 Cycles followed by 40,000 24Kn R=0.5 Cycles

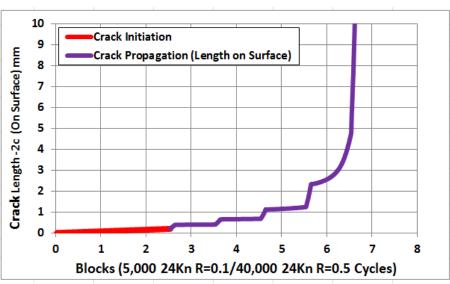

- 1. Overview of Effort
- 2. Machined Samples Analysis/Test Results Comparison Summary
- 3. 24Kn R=0.1(5,000 cycles)/0.5(40,000 cycles) Block Loading Machined Sample Detailed Analysis/Test Comparison
 - 4. 24Kn Variable Amplitude Machined Sample Block Loading Analysis/Test Comparison Issues?
 - 5. Crack Initiation and Crack Propagation Analysis Methodology Background (If time allows)

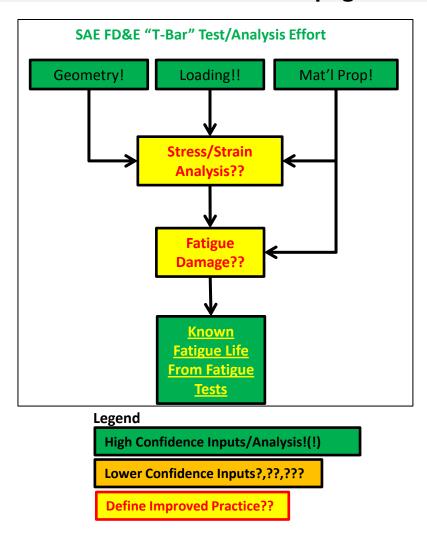
Examine, in More Detail, the Analytical/Experimental Results of a Typical Test - Specimen 30


	Test	Test	Max Stress	Max Strain	Setup Cycle	Test Life (TL)	Test Life	Predicted	Predicted	Predicted	Fatigue Exp. #2	CI+CP Life/
Specimen	Load	R Ratio	Level	Level	R Ratio	Cycle Counter	PV File	CI Life	CP Life	CI+CP Life	Predicted CI Life	Test Life (TL
Number	Kn	Dimensionless	Mpa	ue	Dimensionless	Cycles or Blocks	Dimensionle					
22	24	0.3	870.44	4150	0.0	266,012	266,001	68,750	117,374	186,124	58,033	0.70
25	24	0.3	870.44	4150	0.3	218,671	218,658	62,430	54,606	117,036	57,765	0.54
35	24	0.3	870.44	4150	0.3	200,464	200,446	68,180	54,753	122,786	57,876	0.61
19	24	0.1	870.44	4150	0.1	58,481	58,470	29,360	41,354	70,714	25,743	1.21
23	24	0.1	870.44	4150	0.1	70,011	70,000	29,710	41,920	71,630	25,944	1.02
20	18	0.1	652.83	3113	0.1	411,745	411,735	98,750	205,590	304,340	83,575	0.74
24	18	0.1	652.83	3113	0.0	424,431	424,205	101,900	225,421	327,321	85,701	0.77
26	10.8	-1.0	391.70	1868	None	214,765	214,656	9,382	184,446	193,828	8,765	0.90
27	10.8	-1.0	391.70	1868	None	271,951	271,836	6,489	215,559	222,048	6,107	0.82
29	24	*Block: 0.1/.5	870.44	4150	0.1	7.2	7.3	2.5	5.0	7.5	2.2	1.04
30	24	*Block: 0.1/.5	870.44	4150	0.1	6.7	6.7	2.5	5.0	7.6	2.3	1.13
32	24	Variable Amplitude	870.44	4150	None	28.0	28.4	5.0	25.3	30.3	3.0	1.08
33	24	Variable Amplitude	870.44	4150	None	29.0	29.0	4.7	24.3	29.0	2.8	1.00


Note that this was one of the nine (out of thirteen) samples that needed no empirical compressive stress correction.


Analytical/Experimental Results (With Empirical Compressive Stress Correction)




<u>Analytical/Experimental Results (With Empirical Compressive Stress Correction)</u>



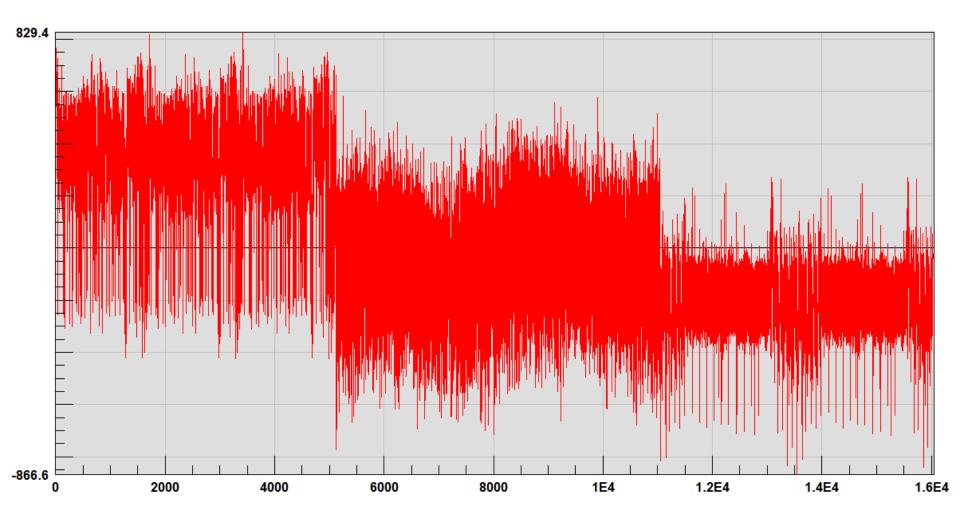
It would be very difficult to consistently stop a "crack initiation evaluation test" at a consistent crack size (and shape) when evaluating a "Life Prediction Improved Practice" because of the very shallow slope of the a vs N curve in that region. Attempting to do that would probably be interpreted as fatigue life scatter in the test results.

Analytical Crack Growth Prediction Results vs Experimental Results

Photos below are approximately 1.64 x part actual dimensions

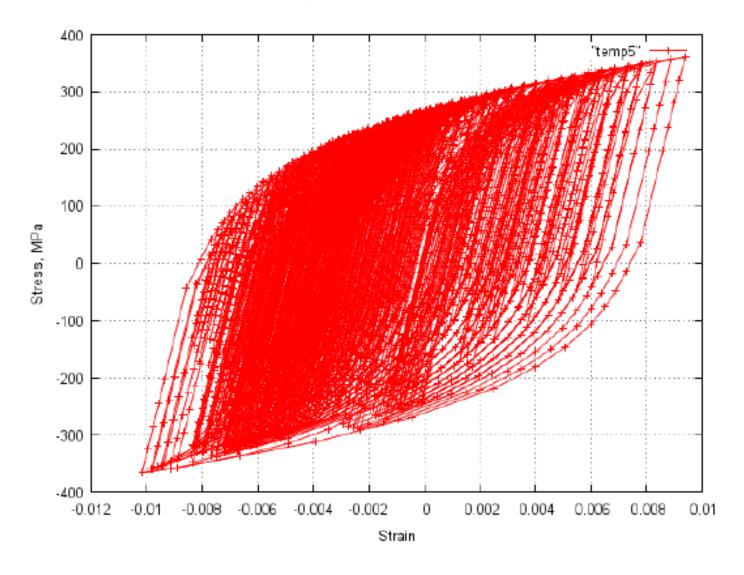
At Failure (100% Life) a = 13.75mm 2c = 94.47mm At 95% Life a = 5.16mm 2c = 26.47mm At 83% Life a = 1.00mm 2c = 3.01mm This indicates that 82% of the fatigue life is consumed initiating and growing to a detectable /observable size.

- 1. Overview of Effort
- 2. Machined Samples Analysis/Test Results Comparison Summary
- 3. 24Kn R=0.1(5,000 cycles)/0.5(40,000 cycles) Block Loading Machined Sample Detailed Analysis/Test Comparison
- 4. 24Kn Variable Amplitude Machined Sample Block Loading Analysis/Test Comparison Issues?
 - 5. Crack Initiation and Crack Propagation Analysis Methodology Background (If time allows)

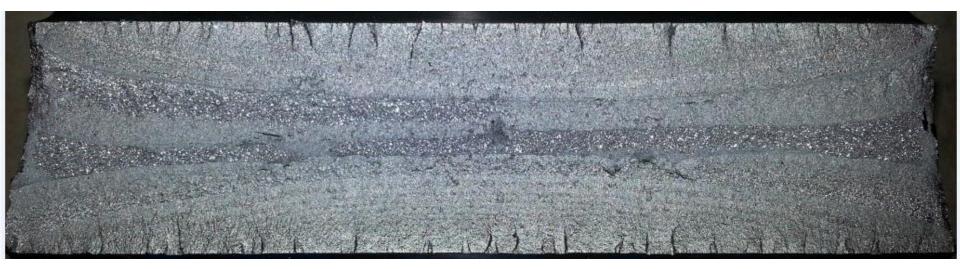

Analytical/Experimental Results

CI Life CP Life CI+CP Life Predicted CI Life Sor Blocks Cycles or Blocks C	Test Life (TL) <u>Dimensionles</u> 0.70 0.54 0.61 1.21 1.02
68,750 117,374 186,124 58,033 62,430 54,606 117,036 57,765 68,180 54,753 122,786 57,876 29,360 41,354 70,714 25,743 29,710 41,920 71,630 25,944	0.70 0.54 0.61 1.21
62,430 54,606 117,036 57,765 68,180 54,753 122,786 57,876 29,360 41,354 70,714 25,743 29,710 41,920 71,630 25,944	0.54 0.61 1.21
68,180 54,753 122,786 57,876 29,360 41,354 70,714 25,743 29,710 41,920 71,630 25,944	0.61 1.21
29,360 41,354 70,714 25,743 29,710 41,920 71,630 25,944	1.21
29,710 41,920 71,630 25,944	
29,710 41,920 71,630 25,944	
	1.02
	0.74
01,900 225,421 327,321 85,701	0.77
57,030 391,856 448,886 52,666	2.09
56,870 415,417 472,287 52,613	1.74
2.5 5.0 7.5 2.2	1.04
7.6	1.13
47.5 56.4 104.0 43.0	3.71
	3.44
	47.5 56.4 104.0 43.0 46.1 53.7 99.9 35.6

Both CI and CP Life Predictions Significantly Exceed the Test Lives. Possible explanation for CP addressed earlier (Simultaneous "Back-face" Crack. <u>But what is reason for CI over-prediction?</u>


Analytical/Experimental Results

Variable Amplitude PV History = 3x SAE Transmission History+ 1x SAE Bracket History+ 2x SAE Suspension History



Analytical/Experimental Results

Local Stress and Strain Response:

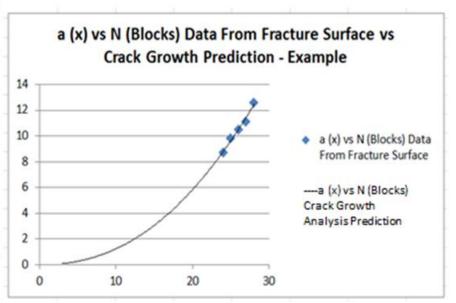
Work Currently in Progress to Sort out Difference between Analytical and Experimental Results

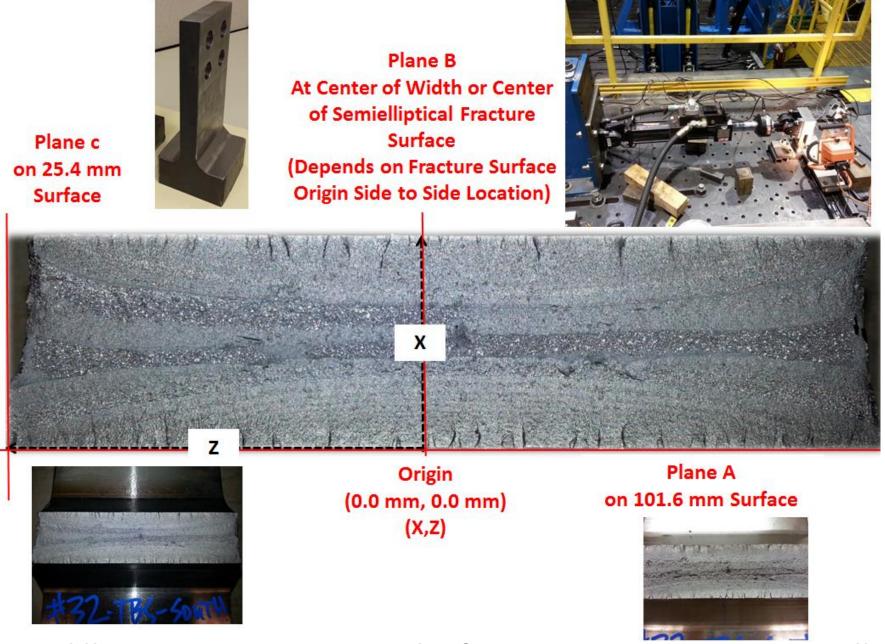
Specimen 32 - Lamda Technologies is "Reading" Fracture surface

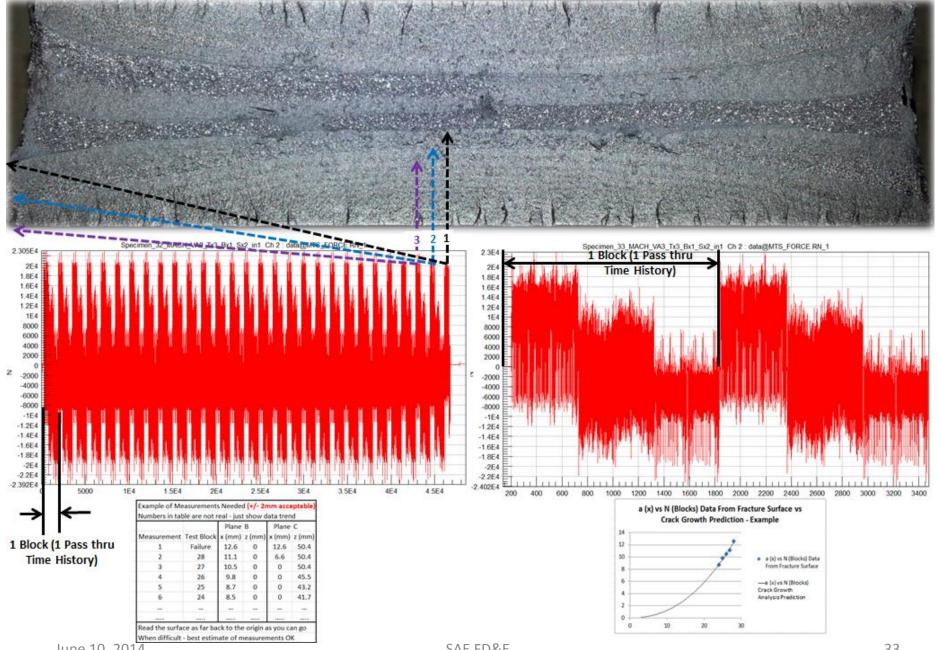
Specimen 33 - Nima Shamsaei (at Mississippi State) is "Reading" Fracture surface

June 10, 2014 SAE FD&E 30

Analytical/Experimental


Determine by "measuring the CP striations" from the two fracture surfaces (on the preceding slide) back from failure as far as possible to quantify how much of the life was spent advancing an identifiable crack from its "initiation".


Please Provide the Table as Shown Below


Numbers in tal	ole are not r	eal - just	t show d	ata tren	d	
		Plane	В	Plane	С	
Measurement	Test Block	x (mm)	z (mm)	x (mm)	z (mm)	
1	Failure	12.6	0	12.6	50.4	
2	28	11.1	0	6.6	50.4	
3	27	10.5	0	0	50.4	
4	26	9.8	0	0	45.5	
5	25	8.7	0	0	43.2	
6	24	8.5	0	0	41.7	
***	•••					

Read the surface as far back to the origin as you can go When difficult - best estimate of measurements OK

The SAE FD&E Committee Will Provide the Crack Growth Prediction and the Correlation as Shown Below

Thank You